Title: Application of artificial intelligence in COVID-19
Abstract:
Coronaviruses transmit COVID-19, a rapidly spreading disease. A Coronavirus infection (COVID-19) was first discovered in December 2019 in Wuhan, China, and spread rapidly throughout the planet in exactly some months. because of this, the virus can cause severe symptoms and even death, especially within the elderly and in people with medical conditions. The virus causes acute respiratory infections in humans. the primary case was diagnosed in China in 2019 and the pandemic started in 2020. Since the quantity of cases of COVID-19 is increasing daily, there are only a limited number of test kits available in hospitals. So, to stop COVID-19 from spreading among people, an automatic diagnosis system must be implemented. during this study, three pre-trained neural networks supported convolutional neural networks (VGG16, VGG19, ResNet50) are proposed for detecting Coronavirus pneumonia infected patients through X-rays and computerized tomography (CT). By using cross-validation, we've got implemented binary classifications with two classes (COVID-19, Normal (healthy)). Taking into consideration the results obtained, the pre-trained ResNet50 model provides the simplest classification performance (97.77% accuracy, 100% sensitivity, 93.33% specificity, 98.00% F1-score) among the opposite three used models over 6259 images.
Biography:
Anjali Dharmik has 5+ Years of Industrial experience in the fields of Data Science, Deep Learning, Machine Learning, Software engineering, Cloud, Automation, Big data, and analytics. Proactive and fast learning individual passionate about data and Artificial Intelligent, solving and building data science use cases with excellent practical and analytical skills.